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The parameters of the p meson are calculated in the coupled ~~-XE problem, using a simple version of
the strip approximation. Experimental values are taken for the ~, E, E, and p masses, while all the coupling
constants are assumed to be related through SU(3). The width of the p turns out to be 360 MeV, while the
mass is 765 MeV. Possible corrections to the model are discussed.

I. INTRODUCTION

N a previous paper, ' hereafter referred to as S, a
- - simple version of the strip approximation was
applied to the irpr problem. Although this is often (but
not always) equivalent to an E/D calculation with a
cuto6, it is nevertheless useful to think of it as a strip
approximation. This is because the cutoG can be cor-
related with the strip width, a quantity whose order of
magnitude can be estimated by physical arguments.

In the present paper, we shall apply the same
approach to the coupled ~x —EE problem. The ex-
changes considered are shown in Fig. 1. Experimental
values are taken for the masses of the ir, E, E*, and 'p'
mesons, while the p mass and pmm coupling are deter-
mined self-consistently. The other couplings are assumed
to be given in terms of the p7rir constant through SU(3).
This assumption can be justified a posteriori in the case
of pEE coupling without going outside the model.

To get an idea of what we might expect in such a
calculation, suppose we consider the degenerate SV(3)
case, in which all the members of the I'S (pseudoscalar)
meson octet have the same mass. This problem can be
diagonalized exactly to give a one-channel problem. '
In this language, one just thinks of PS-I'5 scattering
with U (vector) meson exchange. By a curious accident,
it turns out that the crossing matrix element P con-
necting the V state in the crossed channel to the V
state in the direct channel is exactly the same as in the
irir problem, where P=-', .

The mm problem with p exchange was considered in S.
We shall repeat the calculation for convenience. This
time, however, we shall take the strip concept more
literally, and assume the strip width to be fixed by the
point at which the inelastic dsf (double spectral func-
tions) have their threshold. ' From S, the partial-wave
amplitude is given by
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where Bi(v) = L(v+ 1)/v"+']'"e" sinb, 8=phase shift,
v= square of barycentric momentum, and v& is the width
of the strip. We shall take v& to correspond to the energy
at which the inelastic dsf given by Fig. 2(b) begins.
In other words, if v~ is the position of the V,

vi = 4vir+ 3. (2)

(c)

FIG. 1. Possible exchanges in the
mm —EE problem.

The function fi(v) in our case is the contribution of the
V in the crossed channel and in the narrow-width
approximation is given by

fi(v) = (3P/v'+')viiyi(1+2(v+1)/vir)Qi(1+2(vg+1)/v).
(3)

Here, I3 is the crossing matrix element connecting the U

state in the crossed channel to the direct channel state,
and y~ is the reduced width of the U, i.e., vinyl is the
half-width in the v variable.

If we solve Eq. (1) by the X/D method, we get

B((v) =Ei(v)/Di(v)
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with
1 "' v"'+')'" fi(v')cVi(v')

cVi(v) = fg(v)Di(v)+ — dv' —
i

(5)
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3 R. H. Capps, Phys. Rev, Letters 10, 312 (1963).
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and
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Now it was shown in S that we can make a threshold
approximation for fl(v). Then

v/l+2 s'/sI'(3+1)
/Vl(v) = f((v) = bl ——3Pyt — — . (7)

(v~+ 1)l+l 2l+lP(i+ s)

If we also make a linear approximation for Eq. (6) with
value and slope given correctly at the physical threshold,
we obtain

FIG. 2. Box diagrams con-
stituting nearby dsf regions.
In each case, it is understood
that the diagram is accom-
panied by the corresponding
crossed graph.

(a)

where
Dl(v) = 1—bi(hi+vhi l),

vr )V&2 l+1 1/2

dv'/
v' 1

(8)
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with

p(v/i+2) hl
Dt(va) =0= 1— —+vs

(vx+1)'-he
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In the V state, Eqs. (7) and (8) give

yl +1(vR)/Dt (v/l) h0 (1o)

which enables us to find b~ in terms of v~ through Eq.
(7). If this b, is substituted into Eq. (8), then the condi-
tion for the t/' resonance is

(b)

total barycentric energy,
I=unitary 2X2 matrix,

gt ——L(s/4) —1)r/'= momentum of pion (mass nor ——1),
ps= t (s/4) —m')' '=momentum of kaon (mass

m= ).
By a straightforward generalization of the procedure
followed in 5, we can write

2
he= —int (vl)' '+(vi+1)' '). T(s) =cV(s)D-'(s),

where E and D satisfy the equations

(13)

Now, if v, is assumed to be known, Eq. (11) is just a
quadratic equation in vg. If we assume that v~ is itself
given in terms of va through Eq. (2), the equation for
v~ is somewhat more complicated. All we have to do,
however, is plot Eq. (11)and see where it vanishes. This
gives v/l

——0.7. Equation (10) then yields yt ——0.98.
In the SU(2) model (~lr scattering), these parameters

correspond to the p having a mass of 360 MeU and a
half-width of 50 MeU. Since the masses of the I'S
octet are badly broken, it is not clear how the corre-
sponding SU(3) model should be interpreted. Perhaps
the most relevant quantity is the reduced width of the
decay of the p into two pions, which is given by p,

3y &
——0.65 ~ The corresponding experimental value,

corresponding to a full width of 100 MeV, is y, =0.16
if the mass is taken to be 765 MeV.

, f(s')&(s')
ds'p(s')-&( )= f(s)D(s)+- (14)

s —s

X(s')
ds'p(s')

s —s
with

(16)p' (s) = (2C"/s'") ~' e(V")

As in the one-channel case, we shall take the strip
width to be given by the threshold of Fig. 2(b). In
other words, san=4m, ', where m, is the mass of the p.
The function f(s) comes from the exchanges of Fig. 1.
The ~, E, Ea, and P masses are now assumed to be all
different and are taken from experiment. 4 The p mass
is left undetermined and will be found self-consistently,
as will also the reduced width y» of the p into two pions
in the s variable. The remaining reduced widths will be
determined from err through SU(3).' If we also approxi-
mate the elements of f(s) by their threshold values, we

II. THE ee-KK SYSTEM IN THE 1 STATE

To get a result which can be unambiguously compared
with experiment, we must do a calculation in which the
x and E masses have their correct values. We then use
the 1 amplitudes

$1/2(Q . g . .)/(4sg 3/2g. 3 2)/. 4 W. H. Barkas and A. H. Rosenfeld, University of California
(12) Radiation Laboratory Report UCRL Report 8030 (unpublished).
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obtain

(17)

where
1 ' p,;(s')

n;(s) =— ds' (21)
S —S

If, as in the one-channel case, we make a linear approxi-

fii(s) = fii(4) = ((mp'+4)/2m'')yii,
3 mg'+4m' 1 m '+4m'-

f..2(s) = f22(4m') = — —— yii, (1&)
2 4nz@4 2 4m p4

f&i(s) = f2i(s) = fi2(4m') = (~2y»/4mx"

X (mxe'+m' 1)')([—mxe' —(m+1)']
X[mx"—(m —1)-']+gm'mxe'} (19)

where m@ andm&* are the @and E*masses, respectively.
It can be shown that the expressions (17) to (19) are
reasonable approximations to the contributions of
Fig. 1.

Since D is normalized to unity at infinity and since
the threshold approximation for f corresponds to a pole
at infinity, we have f(s) =E(s). Thus Eq. (15) becomes

D;,(s)=8;, n, (s)f—;;, (20)

y = —[.~Vd] —detD
ds S=M p

2

where d is the cofactor of D. In particular, the reduced
width of the p into two pions is

vii= [fii—(f»f22
d—detD

4$
—fn f2i)n2(m, ')]

—S=m p
2

Now Eqs. (23) and (24) are both quadratic equations in
y~~. If we eliminate the yj~' term, we obtain at s= m, '

mation for D;;(s) by expanding n, (s) about s=4mP,
we obtain

n;(s) = (m, 2/~)([c;(c,i 1)]i&'
—3»[(c*)'"+(c~+1)'"]}

+(s/2z) ln[(c;)' '+(c,+1)' '], (22)

where c;=(si/4m )—1. The position of the p is now
given by

detD(m p') =0, (23)

while the residue matrix is

gll [(ni n2+nin2 )/nin2]
+11

(giig22 —gi~g2i)n~+(g»ni'+g22n2') —(gi&ni+g2~2) [(«'n2+nin~')/nin2]

[v
0 i ——,(27)

(s—m, ')'+v '4 '/(V '+1)]
we obtain a half-width for the distribution of 180 MeV.

It is not possible to check whether our SU(3) model
is reasonable for the E~Em and KKP couplings without
going beyond our scheme. However, we can check the
pKE coupling by calculating it through Eq. (24),
which gives y~2 ——1.36 for the reduced width. The cor-
responding result calculated in terms of the p7t-+ ver-
tex through SU(3)' is y22=(y»/2)=1. 45, a result
which is not too different from the calculated value.
This seems to suggest that using SU(3) to obtain rela-
tions between reduced widths may be quite a reasonable
procedure, even if the masses are badly broken. It is
also an interesting fact that the reduced width y~~ cal-
culated in the degenerate calculation of the preceding
section is 2.6 in the s variable, a result which is about
the same as the value 2.9 obtained in the nondegenerate
calculation of this section. Thus it might be not un-
reasonable to use even unbroken SU(3) symmetry to
calculate reduced widths.

where g;,=y» 'f;, .
Since the g,; are independent of p», Eq. (26) deter-

mines p» for any assumed m, '. This enables us to cal-
culate detD(m, ') and check whether it vanishes. By
trying various m, , it was found that Eq. (23) is satisfied
for m, =30. The corresponding value of y~& is 2.9. If
we plot the xm 1 cross section

127'vii' i'/( i'+1)

[N(t~ —N)]'"

Jo s

—2 Ip(s)

2
Ji(s) lnt~

2
+ Ii(s) I, (28)

s —4

III. POSSIBLE CORRECTIONS TO THE MODEL

Ke shall now discuss possible corrections to the model.
The most obvious one, which is still within the strip
approximation, would be the effect of higher waves.
These presumably come mainly from the contributions
of the type represented by Fig. 2 to the strip regions.
To get an idea of their eRect, it should be su%cient to
evaluate the s-channel absorptive part A, r of Fig. 2(a)
at various values of s and t in the region s&sj, t&s~
and compare it with the corresponding contribution of
1 waves. Of course, in evaluating Fig. 2(a), we have
to subtract out its contribution to the 1 state which is
already explicitly taken into account for s&s&. In the
zero-width approximation for the p, we thus have in the
I= 1, ~x state

9yii'(m, '—4) 2s
A,.'(s, t) = 1+

4[s(s—4)]'" m, '—4J
tail ([t/ (tg t)] }

X
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where

tgg=4mp' 1

TABLE I. The absorptive parts A, '(s, t) and C,'(s, t)
at various values of s and t.

A, '(s, t) C,'(s, t)

30
30
60
60

0
30
0

30

5.1X10 4

5.0X10
1.8X 10-'
7.6X10 '

3.2
10.7
2.3
47

~ R. E. Cutkosky, Nucl. Phys. 37, 57 (1962).

Js(s) = 1nt~ —2 ln[(t~+ s 4) '—~' (s——4) '~'7,

Jt(s) =—,'tn Js(s) —[(s—4)(t~+s—4)7'",
Ie(s) = sJs(s) (lnt~+2 in[(t~+s —4) '~s —(s—4)'~'7),
I,(s) =—,'tnIs(s) —-', (s—4) —[(s—4)(tn+ s—4)7'"

Xln[(s —4)' '—(tn+s 4)'"—7.
Actually, if we are only interested in estimating the

eRect of Eq. (28) at moderate energies, it should be
sufFicient to keep only the lowest term in an expansion
of A, '(s, t) in powers of (t/t~). This gives

burrs(mp' —4) 2s
A '(s,t) = 1+

tz(s —4)]'" m '—4)

is—4 '
t 2t ~36t& 64(—s 4)—

xl ——P,
l
1+ l- . (»)

E t~ k s—4I 175tg'

Equation (29) is to be compared with the corresponding
P-wave contribution to the absorptive part, which has
the form

, or t' 2t
C, '(s, t) = [s(s—4)7'"I'rl 1+

l
(30)

16~ i s—4)
with o given by Eq. (27). The results for Eqs. (29) and
(30) are shown for various values of s and t in Table I.
We see that the effect of Fig. 2 is small.

To go beyond the strip approximation, we must have
a systematic procedure for including all possible effects,
inelastic as well as elastic. One such procedure, for
which the lowest order approximation is essentially
Eq. (1), is the multiple-impulsive peripheral expansion
suggested by Cutkosky. ' In this expansion, diagrams
are computed just as they would be with ordinary
Feynman rules except that continuous as well as dis-
crete masses make up the internal lines. In higher order
diagrams, one also has to be careful not to double-
count effects which are already included in lower order
diagrams. The lowest order approximation is given by
diagrams typified by Fig. 3, in which all legs could be
continuum states and the vertices essentially consist of
a finite number of low partial-wave amplitudes. The
main difhculty with the approach is that higher order

FrG. 3. Typical lowest order dia-
grams. In degenerate I'S-I'S scatter-
ing, these just give Eq. (11 in s par-
ticular partial wave.

(b)

diagrams usually diverge and so one has to introduce
regulators. These correspond to a cutoff at an energy
which presumably can be identified with the strip width.

In addition to bringing in higher effects, the above
method can be used to improve the lowest order approxi-
mation. This is because a given set of diagrams can be
used to calculate the partial-wave amplitudes, which
themselves constitute the vertices in the diagrams.
Thus we have a set of integral equations for these partial-
wave amplitudes. For instance, as we increase the num-
ber of diagrams in degenerate PS-PS scattering, we
have to include their eRect in f&(v) in Eq. (1) at the
same time. This should give an improved lowest order
term when we solve the resulting Fq. (1).

Now because the inclusion of more diagrams pre-
sumably treats higher energy effects more and more
accurately, the cutoff has to be increased each time,
since it is just a device for damping effects which are
too large because they were not treated properly. The
simplest way of doing this is to take as the cutoff the
normal threshold of the lowest diagram which is left out.
Another method would be to set all strip widths equal
and fix them by the requirement that the calculated
mass of the pion be equal to the assumed value. This
does not introduce any parameters since one mass has
to be arbitrary to fix the mass scale.

If we allow the number of diagrams to tend to in-
finity, the strip width should tend to infinity at the
same time, and the sum of all the diagrams should
approach the correct answer. It is not clear, of course,
whether this procedure converges. Perhaps it converges
only by increasing at the same time the number of par-
tial waves in the basic vertices. However, the fact that
at least the low-energy absorptive part of the next
highest diagram in ms. scattering (Fig. 2) is small com-
pared with the lowest order term (as we saw at the be-
ginning of this section) suggests that the possibility
of such a convergence is not entirely unreasonable.


